

Techniques for Prevention and Remediation of Non-Load Related Distresses on HMA Airport Pavements

Airfield Asphalt Pavement Technology Program Project 05-07

Problem

- 80 to 85% of the airfield pavements are Hot Mix Asphalt
- The Majority of these are General Aviation Airfields
- Limited Funding for Maintenance and Repairs
- Result is non-load associated block cracking and surface distress

To provide comprehensive technical guidance on the causes and measures required to correct and/or prevent non-load related distress on HMA airfield pavements.

Research Team

- Douglas I. Hanson
 - AMEC Earth and Environmental
- Dr. Gayle King
 - GHK, Inc
- Dr. Mark Buncher
 - The Asphalt Institute
- John Duval
 - The Asphalt Institute
- Phil Blankenship
 - The Asphalt Institute
- Mike Anderson
 - The Asphalt Institute

Definitions

Block Cracking

- Interconnected cracks that divide the pavement into approximately rectangular pieces.
- □ range in size from approximately 1 by 1 ft to 10 ft by 10 ft.
- Caused mainly by volume changes within the HMA caused by daily temperature cycling (that results in daily stress/strain cycling). It is not load associated.
- The occurrence of block cracking usually indicates that the asphalt binder has hardened significantly.

Definitions

Longitudinal or Transverse Cracking

- □ A poorly constructed paving lane joint.
- Shrinkage of the HMA pavement due to low temperatures or hardening of the asphalt binder or
- A reflection crack caused by cracks beneath the surface course

Definitions

Raveling

- Raveling and weathering are the wearing away of the pavement surface caused by the dislodgement of aggregate particles and loss of asphalt binder.
- Such damage may indicate that the asphalt binder has age-hardened significantly.

OUTLINE

- Factors Contributing to Non-Load Associated (NLA) Distress
- Geographical Distribution of Airfields Potentially Exhibiting NLA Distress
- Steps that can be taken to Prevent NLA Distresses In Airfield Pavements
- Steps that can be taken to Medicate NLA Distress
- Laboratory Test Procedures that can be used to define the Extent and Nature of NLA Distress

Factors Contributing to NLA Distress

- Crude source,
- Mixture variables, and
- Construction variables.

Climate

Process

- As the temperature increases the rate of oxidation increases
- Result is asphalt binder becomes more brittle
- When temperature drops thermal stress develops – asphalt binder has lost elasticity and cannot recover and it cracks

Asphalt Crude Source

Some asphalts age more rapidly than others

Mixture Variables

- Aggregate Absorption
 - PG Binder Grade
 - Asphalt Additives
 Polymers
 Hydrated Lime

Pavement Variables

- Age hardening is most prominent at the surface
- Aging will occur primarily in top ½ inch
- Temperature of pavement will drop 6°C per inch of thickness

Pavement variables

Data Sources

State Aviation Data Bases

- Used MICRO PAVER pavement distress data from state aviation data bases
- LTPP Bind
 - Developed by the Federal Highway Administration
 - Uses 30 years of historical records to establish average high and low temperatures at hundreds of weather stations across the country.

- Size of sample
 16 States
 - 781 Million Square Yards of HMA Pavement
 - 142 Million Square Yards of Pavement with NLA Distress

• Or 18.3%

What do you do to prevent?

- Climate,
- Crude source/Binder Grade,
- Mixture Design
- Construction

Crude Source/Binder Grade

- Canada and the US are now using the SuperPave binder system for the purchase of asphalt binders such as a PG 64-22
- SUGGESTION Drop the low temperature PG grade one grade
 - Example if you should use a 58-22 use a a 58-28.

Mix Design

The key is film thickness

Therefore

- Sufficient asphalt
- Consider dropping the design air voids from 4% to 3 ½ % or even 3%. The result is increased asphalt and film thickness
- Be sure you do not accomplish this by increasing the fines
- Look at using low permeability mixes, such as SMA

Construction

 Goal is to restrict the supply of oxygen into the pavement

- Therefore:
 - Insure that you achieve compaction
 - Then seal the pavement to zero permeability soon after placement

- Implement an active pavement preservation program to include:
 - Preventive maintenance,
 - Minor rehabilitation (non-structural), and

Some routine maintenance activities.

- The goal is to reduce aging and extend service life and in some cases restore the function of the existing pavement.
- Or apply the "Right Treatment at the Right Time"

Time

Estimated Life	Extensions	(years)	
----------------	-------------------	---------	--

Surface Treatment	Good Condition (PCI=80)	Fair Condition (PCI=60)	Poor Condition (PCI=40)
Spray Applied Seal	3 - 5	1 - 3	1 - 2
Chip Seal	7 - 10	3 - 5	1 - 3
Slurry Seal	7 – 10	3 - 5	1 - 3
Microsurfacing	8 – 12	5 - 7	2 - 4

Pavement Age

LABORATORY TEST PROCEDURE

Test Procedure – DC(T)

Summary & Conclusions

- NLA Distress is the result of age hardening of the asphalt binder
 - As the binder hardens it loses it ductility
- Oxygen must penetrate the surface of the pavement to before it can react
 - Therefore take steps to reduce the permeability of the pavement!!!!!!
- "Apply the right treatment at the right time"

QUESTIONS